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ABSTRACT

Crystals that have sufficient elastic anisotropy can exhibit cuspidal features in the
group-velocity surface so that the group velocity is double or triple-valued. In nonpiezo-
electric crystals such cuspidal features occur only in the quasi-transverse (QT ) modes
when the wave vectors are restricted to the symmetry planes of the crystal. Sufficient
piezoelectric stiffening of the elastic constants, however, can generate cuspidal features
in other modes when the wave vectors are restricted to these same symmetry planes.
In barium sodium niobate (BSN) there is insufficient elastic anisotropy to generate cus-
pidal features when piezoelectric stiffening is neglected. The addition of piezoelectric
stiffening changes only the quasi-longitudinal (QL) and QT modes in the (100) and
(010) planes, and changes only the pure transverse (T ) in the (001) plane. There is
sufficient piezoelectric stiffening, however, to generate small cuspidal features in the
QL mode about the [001] and [001̄] axes in the (100) and (010) planes. In Rochelle
salt, however, there is sufficient elastic anisotropy to generate cuspidal features in the
QT modes about collinear axes along nonsymmetry directions in the (100) and (010)
planes. The addition of piezoelectric stiffening changes only the T mode in the (100),
(010) and (001) symmetry planes. This piezoelectric stiffening is large enough, how-
ever, to generate large cupsidal features in the T mode about new collinear axes along
nonsymmetry directions in the (010) and (001) planes.
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1. INTRODUCTION

Phonon focusing in the long-wavelength limit depends upon the second-order elastic
constants [1]. The ratios between these constant determine the shape of the phase- and
group-velocity surfaces. If there is sufficient anisotropy the group-velocity surface can
exhibit cuspidal features where this surface can be double or triple-valued [2,3]. In
nonpiezoelectric crystals such cuspidal features are restricted to the quasi-transverse
(QT ) modes. If the wave vectors are further restricted to the symmetry planes of the
crystal (i.e., in-plane wave vectors) then one of the transverse modes becomes polarized
perpendicular to the wave vector thus becoming purely transverse (T ). Such pure or
(T ) modes are characterized by the absence of any in-plane cuspidal features [3].

In piezoelectric crystals, however, the coupling between the stress field and the ac-
companying electric field stiffens the elastic constants. The amount of elastic stiffening
depends not only upon the piezoelectric and permittivity constants, but also upon the
direction of the wave vector for the propagating elastic wave [4]. By changing the ratios
between the elastic constants elastic stiffening modifies the shape of phase- and group-
velocity surfaces, and thus modifies the phonon-focusing properties of single crystals
[5]. In strongly piezoelectric materials this coupling between the elastic and electric
variables is strong enough to dramatically change phonon-focusing scatter plots [6,7],
and predictions of boundary-scattered phonon conductivity [8].

This paper discusses two strongly piezoelectric orthorhombic crystals, barium sodium
niobate and Rochelle salt. Piezoelectric stiffening in both of these crystals is strong
enough to create in-plane cuspidal features in the group-velocity plots for modes that
are cusp-free when effects of piezoelectric stiffening are ignored. In barium sodium nio-
bate unique cuspidal features appear in the QL mode. In Rochelle salt unique in-plane
cuspidal features appear in the pure T mode.

2. THEORY

In piezoelectric media the elastic and electric variables are coupled affecting the
dynamics of the system. The elastic stress tensor σij and the electric displacement Dr

are given by [4,6]:
σij = CE

ijlmSlm − eijrEr (1)

Dr = eijrSij + εSrlEl (2)

where E is the electric field, Slm is the elastic strain tensor:

Slm =
1

2

[
∂ul

∂xm
+
∂um

∂xl

]
(3)

u(x, t) is the deformation or displacement field of the medium, CE
ijlm is the elastic

constant tensor at constant electric field, eijr is the piezoelectric stress tensor and εSrl is
the permittivity tensor at constant strain. Note that the Einstein convention is used



(i.e., summation over repeated subscripts). Contracted Voigt notation is generally used
to represent the elastic, piezoelectric, and permittivity tensors as matrices CIJ , erI, and
εpq, respectively.

The local force on the medium is:

ρ
∂2ui

∂t2
=
∂σij

∂xj
(4)

where ρ is the density. This allows plane wave solutions:

u = Uei(ωt−k·x). (5)

Since acoustic phase velocities are five orders of magnitude smaller than the velocity
of light, one can make the quasistatic approximation [4] for the electric field so that E
is constrained to be parallel to the wave vector k. Assuming there are no free charges:

5·D = 0. (6)

The above equations can be combined to give the stiffened Christoffel equations:

(Λil − ρs
2δil)Ul = 0 (7)

where s is the phase velocity ω/k, and δil is the Kronecker delta. The Christoffel
coefficients are given by:

Λil = Cijlmnjnm (8)

where nj are the direction cosines of the wave vector k, and Cijlm are the piezoelectri-
cally stiffened elastic constants [4,6]:

Cijlm = CE
ijlm +

eijrnrelmsns

εSpqnpnq
. (9)

Solutions for the phase velocity s is obtained by equating the secular determinant to
zero:

|Λil − ρs
2δil| = 0 (10)

If the wave vectors are confined to a symmetry plane the solution factors into a pure
transverse mode sT polarized perpendicular to that symmetry plane, and two mixed,
i.e., impure, modes s+ and s− orthogonally polarized in that symmetry plane. When
the (100) plane, for example, is a symmetry plane then n1 = 0 and Λ12 = Λ13 = 0.
The solutions for the phase velocity then factor to:

ρs2
T = Λ11 (11)

2ρs2
± = Λ22 + Λ33 ± [(Λ22− Λ33)

2 + 4Λ2
23]

1
2 . (12)

Solutions for the (100), (010) and (001) planes of orthorhombic crystals are given in
terms of generalized elastic constants in Table I of reference [9].



The group velocity is defined as v = ∂ω/∂k. In the absence of dispension this
becomes:

v =
∂s

∂n
. (13)

Differentiating the Christoffel equation with respect to nα and multiplying this result
by Ui using the normalizing condtion UiUi = 1 one obtains the useful result [6]:

vα =
1

2ρs

∂Λil

∂nα
UiUl. (14)

Piezoelectric stiffening of the Christoffel coefficients give from Eqs. (8) and (14) [6]:

vα =

[
2CE

iαlmnm +
∂

∂nα

[
eijrnjnrelmsnmns

εSpqnpnq

]]
UiUl

2ρs
. (15)

Orthorhombic crystals exist in three crystal classes: 222, mm2, and mmm. Only
classes 222 and mm2, however, can exhibit piezoelectricity. Rochelle salt (potassium
sodium tartrate KNaC4H4O6 · 4H2O) is 222 [6,10], whereas barium sodium niobate
(Ba2NaNb5O15) is mm2 [6,10]. Both of these crystals have large piezoelectric stress
constants [6,11].

2.1 Orthorhombic 222

If the crystal symmetry is orthorhombic 222, then each of the three symmetry planes
is perpendicular to a 2-fold axis, and the only nonzero piezoelectric stress constants erI
are [4,6]: e14, e25, and e36. As a result, the only stiffened elastic constants are:

C44 = CE
44 + (e14n1)2/ε

C55 = CE
55 + (e25n2)2/ε

C66 = CE
66 + (e36n3)2/ε

where ε = ε11n
2
1 + ε22n

2
2 + ε33n

2
3.

For the (100) plane, for example, n1 = 0 and only C55 and C66 are stiffened, so only
the pure transverse (T ) mode is stiffened [9]. The two mixed modes remain unstiffened
in this plane. Similar arguments for the (010) and (001) planes show that only the T
mode stiffens in each of these planes whereas the two mixed modes remain unstiffened
[9].

2.2 Orthorhombic mm2

If, however, the crystal symmetry is orthorhombic mm2, then the (100) and (010)
planes exhibit mirror symmetry, whereas the (001) plane is perpendicular to the 2-fold



[001] axis. The only nonzero erI for mm2 symmetry are [4,6]: e15, e24, e31, e32, e33.
In this case the only unstiffened elastic constant is C66. The remaining eight stiffened
elastic constants are:

C11 = CE
11 + (e31n3)2/ε

C22 = CE
22 + (e32n3)2/ε

C33 = CE
33 + (e33n3)2/ε

C44 = CE
44 + (e24n2)2/ε

C55 = CE
55 + (e15n1)2/ε

C12 = CE
12 + e31e32n

2
3/ε

C23 = CE
23 + e32e33n

2
3/ε

C13 = CE
13 + e31e33n

2
3/ε

where ε = ε11n
2
1 + ε22n

2
2 + ε33n

2
3.

For the (100) plane, for example, n1 = 0 so that C55 is no longer stiffened. As a result
only the T mode is unstiffened in the (100) plane whereas both mixed modes are stiff-
ened [9]. For the (010) plane n2 = 0 so that C44 is no longer stiffened making the T
mode the only unstiffened mode in the (010) plane [9]. For the (001) plane, however,
n3 = 0 so that the only stiffened elastic constants are C44 and C55. As a result the T
mode is the only stiffened mode [9]; the two mixed modes remaining unstiffened in the
(001) plane.

3. RESULTS

Polar plots of the group-velocity for each symmetry plane are given for barium
sodium niobate in Fig. 1, and for Rochelle salt in Fig. 2. Plots (a), (c) and (e) are
results with piezoelectric stiffening ignored. These results are contrasted with piezo-
electric stiffened results in plots (b), (d) and (f).

4. DISCUSSION

Results are in agreement with predictions [6] based upon the 222 and mm2 classes
of orthorhombic crystals. Wave vectors that lie in a plane which is normal to a 2-fold
axis of symmetry give piezoelectric stiffening to the pure (T ) mode, whereas the two
mixed modes remain unstiffened. Wave vectors, however, that lie in a mirror plane
give piezoelectric stiffening to both mixed modes, whereas the pure (T ) mode remains
unstiffened. Note that in the absence of piezoelectricity, in-plane cuspidal features (re-
sulting from constraining the wave vectors to a symmetry plane) are permitted only
for the QT mixed mode.



The large value of the piezoelectric stress constant e33 in barium sodium niobate
significantly stiffens C33 resulting in small cuspidal features in the QL mode about the
[001] and [001̄] axes in the (100) and (010) planes. Stiffening for the QT mode in the
(100) and (010) planes and for the T mode in the (001) plane, however, gives only
minor changes to the group velocities. The large value of e14 in Rochelle salt signifi-
cantly stiffens C44 giving large prominent cuspidal features to the T mode in the (010)
and (001) planes. The small values of e25 and e36 in contrast, however, give very little
stiffening to C55 and C66, respectively, and thus no significant changes to the group
velocities for the (100) plane.
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Figure 1: Polar plots of the group velocity for barium sodium niobate (BSN) for each
symmetry plane. Curve (a) (100) plane with piezoelectricity stiffening ignored; (b)
(100) plane with piezoelectric stiffening; (c) (010) plane with piezoelectric stiffening
ignored; (010) plane with piezoelectric stiffening; (e) (001) plane with piezoelectric
stiffening ignored; (f) (001) plane with piezoelectric stiffening.



Figure 2: Polar plots of the group velocity for Rochelle salt for each symmetry plane.
Curve (a) (100) plane with piezoelectricity stiffening ignored; (b) (100) plane with
piezoelectric stiffening; (c) (010) plane with piezoelectric stiffening ignored; (010) plane
with piezoelectric stiffening; (e) (001) plane with piezoelectric stiffening ignored; (f)
(001) plane with piezoelectric stiffening.


